Configuration File
Contents
Configuration File#
Nameserver Configuration File - conf/nameserver.flags#
# nameserver.conf
--endpoint=127.0.0.1:6527
--role=nameserver
# If you are deploying the standalone version, you do not need to configure zk_cluster and zk_root_path, just comment these two configurations. Deploying the cluster version needs to configure these two items, and the two configurations of all nodes in a cluster must be consistent
#--zk_cluster=127.0.0.1:7181
#--zk_root_path=/openmldb_cluster
# set the username and password of zookeeper if authentication is enabled
#--zk_cert=user:passwd
# The address of the tablet needs to be specified in the standalone version, and this configuration can be ignored in the cluster version
--tablet=127.0.0.1:9921
# Configure log directory
--openmldb_log_dir=./logs
# Configure whether to enable automatic recovery. If it is enabled, the node will automatically perform the leader switch if it hangs, and the data will be automatically restored after the node process starts.
--auto_failover=true
# Configure the thread pool size, no need to modify
#--thread_pool_size=16
# Configure the number of retry attempts, the default is 3
#--request_max_retry=3
# Configure the request timeout in milliseconds, the default is 12 seconds
#--request_timeout_ms=12000
# Configure the retry interval when the request is unreachable, generally does not need to be modified, in milliseconds
#--request_sleep_time=1000
# Configure the zookeeper session timeout in milliseconds
--zk_session_timeout=10000
# Configure the zookeeper health check interval, the unit is milliseconds, generally does not need to be modified
#--zk_keep_alive_check_interval=15000
# Configure the timeout period for tablet heartbeat detection in milliseconds, the default is 1 minute. If the tablet is still unreachable after this time, the nameserver considers that the tablet is unavailable and will perform the operation of offline the node
--tablet_heartbeat_timeout=60000
# Configure the tablet health check interval, in milliseconds
#--tablet_offline_check_interval=1000
# The number of queues to perform high-availability tasks
#--name_server_task_pool_size=8
# The number of concurrent execution of high-availability tasks
#--name_server_task_concurrency=2
# The maximum number of concurrent execution of high-availability tasks
#--name_server_task_max_concurrency=8
# Check the waiting time of the task when executing the task in milliseconds
#--name_server_task_wait_time=1000
# The maximum time to execute the task, if it exceeds, it will log. The unit is milliseconds
#--name_server_op_execute_timeout=7200000
# The time interval of receiving the status of the next task in milliseconds
#--get_task_status_interval=2000
# The time interval of receiving the status of the next table in milliseconds
#--get_table_status_interval=2000
# Check the minimum difference of binlog synchronization progress, if the master-slave offset is less than this value, the task has been successfully synchronized
#--check_binlog_sync_progress_delta=100000
# The maximum number of tasks to save, if this value is exceeded, completed and failed ops will be deleted
#--max_op_num=10000
# Create the default number of replicas for the table
#--replica_num=3
# Create the default number of shards for a table
#--partition_num=8
# The default number of replicas for system tables
--system_table_replica_num=2
Tablet Configuration File - conf/tablet.flags#
# tablet.conf
# Whether to use aliases
#--use_name=false
# The port number to start, if the endpoint is specified, it is not necessary to specify the port
#--port=9527
# Startup ip/domain name and port number
--endpoint=127.0.0.1:9921
# The role to start, cannot be modified
--role=tablet
# If you start the cluster version, you need to specify the address of zk and the node path of the cluster in zk
#--zk_cluster=127.0.0.1:7181
#--zk_root_path=/openmldb_cluster
# set the username and password of zookeeper if authentication is enabled
#--zk_cert=user:passwd
# Configure the thread pool size, it is recommended to be consistent with the number of CPU cores
--thread_pool_size=24
# zk session timeout, in milliseconds
--zk_session_timeout=10000
# Interval for checking zk status, in milliseconds
#--zk_keep_alive_check_interval=15000
# log file path
--openmldb_log_dir=./logs
# Specify the max memory usage of tablet. If memory usage exceeds the value, write will fail. The default value 0 means unlimited
#--max_memory_mb=0
# binlog conf
# Binlog wait time when no new data is added, in milliseconds
#--binlog_coffee_time=1000
# Master-slave matching offset waiting time, in milliseconds
#--binlog_match_logoffset_interval=1000
# Whether to notify the follower to synchronize immediately when data is written
--binlog_notify_on_put=true
# The maximum size of the binlog file, in MB
--binlog_single_file_max_size=2048
# Master-slave synchronization batch size
#--binlog_sync_batch_size=32
# The interval between binlog sync and disk, in milliseconds
--binlog_sync_to_disk_interval=5000
# The wait time when there is no new data synchronization, in milliseconds
#--binlog_sync_wait_time=100
# binlog filename length
#--binlog_name_length=8
# The interval for deleting binlog files, in milliseconds
#--binlog_delete_interval=60000
# Whether binlog enables crc verification
#--binlog_enable_crc=false
# Thread pool size for performing io-related operations
#--io_pool_size=2
# The thread pool size for tasks such as deleting tables, sending snapshots, load snapshots, etc.
#--task_pool_size=8
# Configure whether to put the table drop data in the recycle directory, the default is true
#--recycle_bin_enabled=true
# Configure the storage time of data in the recycle directory. If this time is exceeded, the corresponding directory and data will be deleted. The default is 0 means never delete, the unit is minutes
#--recycle_ttl=0
# Configure the data directory, multiple disks are separated by commas
--db_root_path=./db
# Configure the data recycle bin directory, the data of the drop table will be placed here
--recycle_bin_root_path=./recycle
#
#Configure HDD table data file path (optional, default is empty), use English commas for multiple disks
--hdd_root_path=./db_hdd
#Configure the recycle bin directory, use English commas for multiple disks
--recycle_bin_hdd_root_path=./recycle_hdd
#
#Configure the SSD table data file path (optional, default is empty), use English commas for multiple disks
--ssd_root_path=./db_ssd
#Configure the data recycle bin directory, where the data of the drop table will be placed
--recycle_bin_ssd_root_path=./recycle_ssd
# Configure whether to enable recycle
#--recycle_bin_enabled=true
# snapshot conf
# Configure the time to do snapshots, the time of day. For example, 23 means taking a snapshot at 23 o'clock every day.
--make_snapshot_time=23
# Check interval for snapshots, in milliseconds
#--make_snapshot_check_interval=600000
# Set the offset threshold of the snapshot, if the offset difference from the last snapshot is less than this value, no new snapshot will be generated, in milliseconds
#--make_snapshot_threshold_offset=100000
# snapshot thread pool size
#--snapshot_pool_size=1
# Whether snapshot compression is enabled. Which can be set to off, zlib, snappy
#--snapshot_compression=off
# garbage collection conf
# The time interval for performing expired deletion, in minutes
--gc_interval=60
# Thread pool size to perform expired deletion
--gc_pool_size=2
# send file conf
# The Maximum number of retry attempts to send a file
#--send_file_max_try=3
# block size when sending files
#--stream_block_size=1048576
# Bandwidth limit when sending files, the default is 20M/s
--stream_bandwidth_limit=20971520
# The maximum number of retry attempts for rpc requests
#--request_max_retry=3
# rpc timeout, in milliseconds
#--request_timeout_ms=5000
# If an exception occurs, the retry wait time, in milliseconds
#--request_sleep_time=1000
# Retry wait time for file sending failure, in milliseconds
#--retry_send_file_wait_time_ms=3000
#
# table conf
# The maximum height of the first level skip list
#--skiplist_max_height=12
# The maximum height of the second level skip list
#--key_entry_max_height=8
# query conf
# max table traverse iteration(full table scan/aggregation),default: 0
#--max_traverse_cnt=0
# max table traverse unique key number(batch query), default: 0
#--max_traverse_key_cnt=0
# max result size in byte (default: 0 unlimited)
#--scan_max_bytes_size=0
# loadtable
# The number of data bars to submit a task to the thread pool when loading
#--load_table_batch=30
# Number of threads to load snapshot files
#--load_table_thread_num=3
# The maximum queue length of the load thread pool
#--load_table_queue_size=1000
# for rocksdb
#--disable_wal=true
# Type of compression, can be off, pz, lz4, zlib
#--file_compression=off
#--block_cache_mb=4096
#--block_cache_shardbits=8
#--verify_compression=false
#--max_log_file_size=100 * 1024 * 1024
#--keep_log_file_num=5
APIServer Configuration File - conf/apiserver.flags#
# apiserver.conf
# Configure the ip/domain name and port number to start the apiserver
--endpoint=127.0.0.1:8080
# role cannot be changed
--role=apiserver
# If the deployed openmldb is a standalone version, you need to specify the address of the nameserver
--nameserver=127.0.0.1:6527
# If the deployed openmldb is a cluster version, you need to specify the zk address and the cluster zk node directory
#--zk_cluster=127.0.0.1:7181
#--zk_root_path=/openmldb_cluster
# set the username and password of zookeeper if authentication is enabled
#--zk_cert=user:passwd
# configure log path
--openmldb_log_dir=./logs
# Configure thread pool size
#--thread_pool_size=16
TaskManager Configuration File - conf/taskmanager.properties#
# Server Config
server.host=0.0.0.0
server.port=9902
server.worker_threads=4
server.io_threads=4
server.channel_keep_alive_time=1800
prefetch.jobid.num=1
job.log.path=./logs/
external.function.dir=./udf/
track.unfinished.jobs=true
job.tracker.interval=30
# OpenMLDB Config
zookeeper.cluster=0.0.0.0:2181
zookeeper.root_path=/openmldb
zookeeper.session_timeout=5000
zookeeper.connection_timeout=5000
zookeeper.max_retries=10
zookeeper.base_sleep_time=1000
zookeeper.max_connect_waitTime=30000
#zookeeper.cert=user:passwd
# Spark Config
spark.home=
spark.master=local[*]
spark.yarn.jars=
spark.default.conf=
spark.eventLog.dir=
spark.yarn.maxAppAttempts=1
batchjob.jar.path=
offline.data.prefix=file:///tmp/openmldb_offline_storage/
hadoop.conf.dir=
#enable.hive.support=false
Details on Spark Config#
Some of the important configurations for Spark Config is as follows:
Note
Understand the relationships between configurations and environment variables.
TaskManager will start a Spark process with SparkSubmit, therefore the environment variables cannot be automatically set. For example, before version 0.8.2, in order for Spark process to access HADOOP and connect to YARN cluster, the environment variable HADOOP_CONF_DIR
needs to be set. In later versions, the Hadoop configuration file location can be specified with configuration item hadoop.conf.dir
. With this configuration, TaskManager will pass the respective environment variable to the Spark process. However, higher priority is given to spark-env.sh
within Spark configuration. If this config is set, TaskManager will not be able to make further changes. Therefore, the priority goes as: spark-env.sh > TaskManager configuration > current environment variable HADOOP_CONF_DIR
.
spark.home
is only used for TaskManager to identify the installation location for Spark. hadoop.conf.dir
, hadoop.user.name
will be passed to Spark process. If any other variables are required, modifications to code is required.
spark.home
#
spark.home
is the installation location, which is used by TaskManager for offline tasks. It is usually configured as the installation location for OpenMLDB Spark distribution.
If spark.home
in TaskManager configuration file is not set, TaskManager will try to read the environment variable SPARK_HOME
. If none is set, TaskManager will fail and prompt spark.home
not set.
With one-clock deployment, SPARK_HOME will be set as <package_home>/spark
. For example, if work/taskmanager
is deployed for host1, SPARK_HOME will be set as /work/taskmanager/spark
. You can configure it in openmldb-env.sh
. Please do not modify properties template files, and pay attention to OPENMLDB envs:
during deployment.
spark.master
#
spark.master
configures Spark modes, more information can be found at Spark Master URL.
TaskManager only allows local
and its variants, yarn
, yarn-cluster
and yarn-client
modes. Default mode is local[*]
, which is milti-process local mode (thread count is cpu counts). Spark cluster spark://
, Mesos cluster mesos://
and Kubernetes k8s://
cluster modes are currently not supported.
local
Mode#
The local mode means that the Spark task runs on the local machine (where the TaskManager is located). In this mode, not many configurations are required, but two points should be noted:
The storage location of offline tables
offline.data.prefix
is set tofile:///tmp/openmldb_offline_storage/
by default, which refers to the/tmp
directory on the TaskManager’s machine. If the TaskManager is moved to another machine, the data cannot be automatically migrated. It is not recommended to usefile://
when deploying multiple TaskManagers on different machines. You can configure it as an HDFS path, and you need to configure the variableshadoop.conf.dir
andhadoop.user.name
. For more details, see Hadoop-related configurations.The path of the batchjob
batchjob.jar.path
can be automatically obtained and does not need to be configured. If you want to use a batchjob from elsewhere, you can configure this parameter.
See also
If Hadoop/Yarn requires Kerberos authentication, refer to the Client FAQ.
yarn/yarn-cluster
Mode#
“yarn” and “yarn-cluster” are the same mode, where Spark tasks run on a Yarn cluster. This mode requires several configurations, including:
The yarn mode must connect to a Hadoop cluster and requires the proper configuration of Hadoop variables
hadoop.conf.dir
andhadoop.user.name
. For more details, refer to Hadoop-related configurations.
The following configurations usually require an HDFS that belongs to the same Hadoop cluster as Yarn, unless a direct hdfs://
address can be used.
The
spark.yarn.jars
configuration specifies the location of Spark runtime JAR files that Yarn needs to read. It must be anhdfs://
address. You can upload thejars
directory from the OpenMLDB Spark distribution to HDFS and configure it ashdfs://<hdfs_path>/jars/*
(note the wildcard). If this parameter is not configured, Yarn will package and distribute$SPARK_HOME/jars
for each offline task, which is inefficient. Therefore, it is recommended to configure this parameter.batchjob.jar.path
must be an HDFS path (specific to the package name). Upload the batch job JAR file to HDFS and configure it with the corresponding address to ensure that all workers in the Yarn cluster can access the batch job package.offline.data.prefix
must be an HDFS path to ensure that all workers in the Yarn cluster can read and write data.
yarn-client
Mode#
Driver executes locally, and the executor executes on the Yarn cluster. Configurations are the same as yarn-cluster
.
spark.default.conf#
spark.default.conf
configures Spark parameters in the format of key=value
. Multiple configurations are separated by ;
, for example: