Monitoring
Contents
Monitoring#
Overview#
The monitoring scheme of OpenMLDB is outlined as follows:
- Use prometheus to collect monitoring metrics, grafana to visualize metrics 
- OpenMLDB exporter exposes database-level and component-level monitoring metrics 
- Node uses node_exporter to expose machine and operating system related metrics 
Install and Run OpenMLDB Exporter#
Introduction#
The OpenMLDB exporter is a prometheus exporter implemented in Python. The core connects the OpenMLDB instance through the database SDK and will query the exposed monitoring indicators through SQL statements. Exporter will follow the OpenMLDB version update and release to PyPI. For production use, you can install the latest openmldb-exporter directly through pip. For development and usage instructions, please refer to the code directory README.
Environmental Requirements#
- Python >= 3.8 
- OpenMLDB >= 0.5.0 
Preparation#
- Get OpenMLDB - You can download precompiled packages from the OpenMLDB release page, or build from source. - Note that when compiling, make sure to enable the compile option: - -DTCMALLOC_ENABLE=ON, the default is- ON:- git clone https://github.com/4paradigm/OpenMLDB cd OpenMLDB # OpenMLDB exporter depends on compiled Python SDK make SQL_PYSDK_ENABLE=ON make install - See compile.md. 
- Start OpenMLDB - See install_deploy How to start OpenMLDB components - OpenMLDB exporter requires OpenMLDB to start the server status function, to do so, add the startup parameter - --enable_status_service=trueat startup, please make sure that- --enable_status_service=true' inconf/(tablet|nameserver).flags- in the installation directory.- The default startup script - bin/start.shenables server status, no additional configuration is required.
- Note: Make sure to select the binding IP addresses of OpenMLDB components OpenMLDB exporter as well as prometheus and grafana to ensure that grafana can access prometheus, and that prometheus, OpenMLDB exporter, and OpenMLDB components can access each other. 
Deploy the OpenMLDB exporter#
- Install openmldb-exporter from PyPi - pip install openmldb-exporter==0.5.0 
- Run - An executable - openmldb-exporterwill be installed by default, make sure pip install path is in your $PATH environment variable.- openmldb-exporter - Note that the appropriate parameters are passed in, - openmldb-exporter -hto see help:- usage: openmldb-exporter [-h] [--log.level LOG.LEVEL] [--web.listen-address WEB.LISTEN_ADDRESS] [--web.telemetry-path WEB.TELEMETRY_PATH] [--config.zk_root CONFIG.ZK_ROOT] [--config.zk_path CONFIG.ZK_PATH] [--config.interval CONFIG.INTERVAL] OpenMLDB exporter optional arguments: -h, --help show this help message and exit --log.level LOG.LEVEL config log level, default WARN --web.listen-address WEB.LISTEN_ADDRESS process listen port, default 8000 --web.telemetry-path WEB.TELEMETRY_PATH Path under which to expose metrics, default metrics --config.zk_root CONFIG.ZK_ROOT endpoint to zookeeper, default 127.0.0.1:6181 --config.zk_path CONFIG.ZK_PATH root path in zookeeper for OpenMLDB, default / --config.interval CONFIG.INTERVAL interval in seconds to pull metrics periodically, default 30.0 
- View the list of metrics - $ curl http://127.0.0.1:8000/metrics # HELP openmldb_connected_seconds_total duration for a component conncted time in seconds # TYPE openmldb_connected_seconds_total counter openmldb_connected_seconds_total{endpoint="172.17.0.15:9520",role="tablet"} 208834.70900011063 openmldb_connected_seconds_total{endpoint="172.17.0.15:9521",role="tablet"} 208834.70700001717 openmldb_connected_seconds_total{endpoint="172.17.0.15:9522",role="tablet"} 208834.71399998665 openmldb_connected_seconds_total{endpoint="172.17.0.15:9622",role="nameserver"} 208833.70000004768 openmldb_connected_seconds_total{endpoint="172.17.0.15:9623",role="nameserver"} 208831.70900011063 openmldb_connected_seconds_total{endpoint="172.17.0.15:9624",role="nameserver"} 208829.7230000496 # HELP openmldb_connected_seconds_created duration for a component conncted time in seconds # TYPE openmldb_connected_seconds_created gauge openmldb_connected_seconds_created{endpoint="172.17.0.15:9520",role="tablet"} 1.6501813860467942e+09 openmldb_connected_seconds_created{endpoint="172.17.0.15:9521",role="tablet"} 1.6501813860495396e+09 openmldb_connected_seconds_created{endpoint="172.17.0.15:9522",role="tablet"} 1.650181386050323e+09 openmldb_connected_seconds_created{endpoint="172.17.0.15:9622",role="nameserver"} 1.6501813860512116e+09 openmldb_connected_seconds_created{endpoint="172.17.0.15:9623",role="nameserver"} 1.650181386051238e+09 openmldb_connected_seconds_created{endpoint="172.17.0.15:9624",role="nameserver"} 1.6501813860512598e+09 
Deploy Node Exporter#
For how to install and deploy prometheus, grafana, please refer to the official documents promtheus get started and [grafana get started](https://grafana.com/docs/ grafana/latest/getting-started/getting-started-prometheus/) .
node_exporter is an official implementation of prometheus that exposes system metrics.
Go to the release page, download and unzip the compressed package of the corresponding platform. For example, under linux amd64 platform:
curl -SLO https://github.com/prometheus/node_exporter/releases/download/v1.3.1/node_exporter-1.3.1.darwin-amd64.tar.gz
tar xzf node_exporter-1.3.1-*.tar.gz
cd node_exporter-1.3.1-*/
# Start node_exporter
./node_exporter
Deploy Prometheus and Grafana#
For installation and deployment of prometheus and grafana, please refer to the official documents promtheus get started and [grafana get started](https://grafana.com/docs/ grafana/latest/getting-started/getting-started-prometheus/). OpenMLDB provides prometheus and grafana configuration files for reference, see OpenMLDB mixin
- prometheus_example.yml: Prometheus configuration example, intended to modify the target address in - node,- openmldb_componentsand- openmldb_exporterjobs
- openmldb_dashboard.json: grafana dashboard configuration for OpenMLDB metrics, divided into two steps: - Under the grafana data source page, add the started prometheus server address as the data source 
- Under the dashboard browsing page, click New to import a dashboard, and upload the json configuration file 
 
Understand Existing Monitoring Metrics#
Taking the OpenMLDB cluster system as an example, the monitoring indicators are divided into two categories according to different prometheus pull jobs:
- DB-Level metrics, exposed through the OpenMLDB exporter, correspond to the - job_name=openmldb_exporterentry in the- prometheus_example.ymlconfiguration:- - job_name: openmldb_exporter # pull OpenMLDB DB-Level specific metric # change the 'targets' value to your deployed OpenMLDB exporter endpoint static_configs: - targets: - 172.17.0.15:8000 - The categories of indicators exposed are mainly: - component status: cluster component status 
- table status: database table related information, such as - rows_cout,- memory_bytes
- deploy query response time: the runtime of the deployment query inside the tablet 
 - The full DB-Level metrics can be listed through the following command: - curl http://172.17.0.15:8000/metrics
- Component-Level metrics. The related components of OpenMLDB (nameserver, tablet, etc), themselves as BRPC server, and expose [prometheus related metrics](https://github.com/apache/incubator-brpc/blob/master/docs/en/bvar .md#export-to-prometheus), you only need to configure the prometheus server to pull metrics from the corresponding address. It corresponds to the - job_name=openmldb_componentsitem in- prometheus_example.yml:- - job_name: openmldb_components # job to pull component metrics from OpenMLDB like tablet/nameserver # tweak the 'targets' list in 'static_configs' on your need # every nameserver/tablet component endpoint should be added into targets metrics_path: /brpc_metrics static_configs: - targets: - 172.17.0.15:9622 - The metrics of exposure are mainly - BRPC server process related information 
- Corresponding to the RPC method related metrics defined by the BRPC server, such as the RPC request - count,- error_count,- qpsand- response_time
 - Metrics and help information can be shown through the following command (Note that the metrics exposed by different components will vary): - curl http://${COMPONENT_IP}:${COMPONENT_PORT}/brpc_metrics 
