Java SDK 快速上手
Contents
Java SDK 快速上手#
1. Java SDK包安装#
Linux下 Java SDK包安装#
配置maven pom
<dependency>
<groupId>com.4paradigm.openmldb</groupId>
<artifactId>openmldb-jdbc</artifactId>
<version>0.5.3</version>
</dependency>
<dependency>
<groupId>com.4paradigm.openmldb</groupId>
<artifactId>openmldb-native</artifactId>
<version>0.5.3</version>
</dependency>
Mac下Java SDK包安装#
配置maven pom
<dependency>
<groupId>com.4paradigm.openmldb</groupId>
<artifactId>openmldb-jdbc</artifactId>
<version>0.5.3</version>
</dependency>
<dependency>
<groupId>com.4paradigm.openmldb</groupId>
<artifactId>openmldb-native</artifactId>
<version>0.5.3-macos</version>
</dependency>
注意: 由于 openmldb-native 中包含了 OpenMLDB 编译的 C++ 静态库, 默认是 linux 静态库, macOS 上需将上述 openmldb-native 的 version 改成 0.5.3-macos
, openmldb-jdbc 的版本保持不变。
2. Java SDK快速上手#
2.1 创建SqlClusterExecutor#
首先,进行OpenMLDB连接参数配置,java sdk集群版和单机版的区别在于连接参数配置不同,默认是集群版
// 集群版配置方式如下:
SdkOption option = new SdkOption();
option.setZkCluster("127.0.0.1:2181");
option.setZkPath("/openmldb");
option.setSessionTimeout(10000);
option.setRequestTimeout(60000);
// 单机版配置方式如下:
SdkOption option = new SdkOption();
option.setHost("127.0.0.1");
option.setPort(6527);
option.setClusterMode(false);
option.setSessionTimeout(10000);
option.setRequestTimeout(60000);
接着,使用SdkOption创建Executor。SqlClusterExecutor执行sql操作是多线程安全的,在实际环境中只创建一个SqlClusterExecutor
即可:
sqlExecutor = new SqlClusterExecutor(option);
2.2 创建数据库#
使用Statement::execute
接口创建数据库:
java.sql.Statement state = sqlExecutor.getStatement();
try {
state.execute("create database db_test");
} catch (Exception e) {
e.printStackTrace();
} finally {
state.close();
}
2.3 创建表#
使用Statement::execute
接口创建一张表:
java.sql.Statement state = sqlExecutor.getStatement();
try {
state.execute("use db_test");
String createTableSql = "create table trans(c1 string,\n" +
" c3 int,\n" +
" c4 bigint,\n" +
" c5 float,\n" +
" c6 double,\n" +
" c7 timestamp,\n" +
" c8 date,\n" +
" index(key=c1, ts=c7));";
state.execute(createTableSql);
} catch (Exception e) {
e.printStackTrace();
} finally {
state.close();
}
2.4 插入数据到表中#
2.4.1 直接执行插入数据#
第一步,使用SqlClusterExecutor::getInsertPreparedStmt(db, insertSql)
接口获取InsertPrepareStatement。
第二步,使用PreparedStatement::execute()
接口执行insert语句。
String insertSql = "insert into trans values(\"aa\",23,33,1.4,2.4,1590738993000,\"2020-05-04\");";
java.sql.PreparedStatement pstmt = null;
try {
pstmt = sqlExecutor.getInsertPreparedStmt(db, insertSql);
Assert.assertTrue(pstmt.execute());
} catch (SQLException e) {
e.printStackTrace();
Assert.fail();
} finally {
if (pstmt != null) {
try {
// PrepareStatement用完之后必须close
pstmt.close();
} catch (SQLException throwables) {
throwables.printStackTrace();
}
}
}
2.4.2 使用placeholder的方式执行插入语句#
第一步,使用SqlClusterExecutor::getInsertPreparedStmt(db, insertSqlWithPlaceHolder)
接口获取InsertPrepareStatement。
第二步,调用PreparedStatement::setType(index, value)
接口,填充数据到InsertPrepareStatement中。
第三步,使用PreparedStatement::execute()
接口执行insert语句。
String insertSqlWithPlaceHolder = "insert into trans values(\"aa\", ?, 33, ?, 2.4, 1590738993000, \"2020-05-04\");";
java.sql.PreparedStatement pstmt = null;
try {
pstmt = sqlExecutor.getInsertPreparedStmt(db, insertSqlWithPlaceHolder);
pstmt.setInt(1, 24);
pstmt.setInt(2, 1.5f);
pstmt.execute();
} catch (SQLException e) {
e.printStackTrace();
Assert.fail();
} finally {
if (pstmt != null) {
try {
// PrepareStatement用完之后必须close
pstmt.close();
} catch (SQLException throwables) {
throwables.printStackTrace();
}
}
}
Note
execute后,缓存的数据将被清除,无法重试execute。
2.4.3 使用placeholder的方式执行批量插入语句#
第一步,使用SqlClusterExecutor::getInsertPreparedStmt(db, insertSqlWithPlaceHolder)
接口获取InsertPrepareStatement。
第二步,调用PreparedStatement::setType(index, value)
接口,填充数据到InsertPrepareStatement中。
第三步,使用PreparedStatement::addBatch()
接口完成一行的填充。
第四步,继续使用setType
和addBatch
,填充多行。
第五步,使用PreparedStatement::addBatch()
接口完成批量插入。
String insertSqlWithPlaceHolder = "insert into trans values(\"aa\", ?, 33, ?, 2.4, 1590738993000, \"2020-05-04\");";
java.sql.PreparedStatement pstmt = null;
try {
pstmt = sqlExecutor.getInsertPreparedStmt(db, insertSqlWithPlaceHolder);
pstmt.setInt(1, 24);
pstmt.setInt(2, 1.5f);
pstmt.execute();
} catch (SQLException e) {
e.printStackTrace();
Assert.fail();
} finally {
if (pstmt != null) {
try {
// PrepareStatement用完之后必须close
pstmt.close();
} catch (SQLException throwables) {
throwables.printStackTrace();
}
}
}
Note
executeBatch后,缓存的所有数据将被清除,无法重试executeBatch。
2.5 执行SQL批式查询#
使用Statement::execute
接口执行SQL批式查询语句:
java.sql.Statement state = sqlExecutor.getStatement();
try {
state.execute("use db_test");
// execute返回值是true的话说明有数据返回,可以通过getResultSet获取
boolean ret = state.execute("select * from trans;");
Assert.assertTrue(ret);
java.sql.ResultSet rs = state.getResultSet();
} catch (Exception e) {
e.printStackTrace();
}
访问查询结果:
// 访问结果集ResultSet,并输出前三列数据
try {
while (result.next()) {
System.out.println(resultSet.getString(1) + "," + resultSet.getInt(2) "," + resultSet.getLong(3));
}
} catch (SQLException e) {
e.printStackTrace();
} finally {
try {
if (result != null) {
result.close();
}
} catch (SQLException throwables) {
throwables.printStackTrace();
}
}
2.6 执行SQL请求式查询#
第一步,使用SqlClusterExecutor::getRequestPreparedStmt(db, selectSql)
接口获取RequestPrepareStatement。
第二步,调用PreparedStatement::setType(index, value)
接口设置请求数据。请根据数据表中每一列对应的数据类型调用setType接口以及配置合法的值。
第三步,调用Statement::executeQuery()
接口执行请求式查询语句。
String selectSql = "SELECT c1, c3, sum(c4) OVER w1 as w1_c4_sum FROM trans WINDOW w1 AS " +
"(PARTITION BY trans.c1 ORDER BY trans.c7 ROWS BETWEEN 2 PRECEDING AND CURRENT ROW);";
PreparedStatement pstmt = null;
ResultSet resultSet = null;
/*
c1 string,\n" +
" c3 int,\n" +
" c4 bigint,\n" +
" c5 float,\n" +
" c6 double,\n" +
" c7 timestamp,\n" +
" c8 date,\n" +
*/
try {
// 第一步,获取RequestPrepareStatement
pstmt = sqlExecutor.getRequestPreparedStmt(db, selectSql);
// 第二步,执行request模式需要在RequestPreparedStatement设置一行请求数据
pstmt.setString(1, "bb");
pstmt.setInt(2, 24);
pstmt.setLong(3, 34l);
pstmt.setFloat(4, 1.5f);
pstmt.setDouble(5, 2.5);
pstmt.setTimestamp(6, new Timestamp(1590738994000l));
pstmt.setDate(7, Date.valueOf("2020-05-05"));
// 调用executeQuery会执行这个select sql, 然后将结果放在了resultSet中
resultSet = pstmt.executeQuery();
// 访问resultSet
Assert.assertEquals(resultSet.getMetaData().getColumnCount(), 3);
Assert.assertTrue(resultSet.next());
Assert.assertEquals(resultSet.getString(1), "bb");
Assert.assertEquals(resultSet.getInt(2), 24);
Assert.assertEquals(resultSet.getLong(3), 34);
// 普通请求式查询的返回结果集只包含一行结果,因此,第二次调用resultSet.next()结果为false
Assert.assertFalse(resultSet.next());
} catch (SQLException e) {
e.printStackTrace();
Assert.fail();
} finally {
try {
if (resultSet != null) {
// result用完之后需要close
resultSet.close();
}
if (pstmt != null) {
pstmt.close();
}
} catch (SQLException throwables) {
throwables.printStackTrace();
}
}
2.7 删除表#
使用Statement::execute
接口删除一张表:
java.sql.Statement state = sqlExecutor.getStatement();
try {
state.execute("use db_test");
state.execute("drop table trans;");
} catch (Exception e) {
e.printStackTrace();
}
2.8 删除数据库#
使用Statement::execute
接口删除指定数据库:
java.sql.Statement state = sqlExecutor.getStatement();
try {
state.execute("drop database db_test;");
} catch (Exception e) {
e.printStackTrace();
} finaly {
state.close();
}
3. 完整的Java SDK使用范例#
import com._4paradigm.openmldb.jdbc.CallablePreparedStatement;
import com._4paradigm.openmldb.sdk.*;
import com._4paradigm.openmldb.sdk.impl.SqlClusterExecutor;
import org.testng.Assert;
import java.sql.*;
import java.util.ArrayList;
import java.util.List;
import java.util.concurrent.TimeUnit;
public class Demo {
private SqlExecutor sqlExecutor = null;
private String db = "mydb16";
private String table = "trans";
private String sp = "sp";
public static void main(String[] args) {
Demo demo = new Demo();
try {
// 初始化构造SqlExecutor
demo.init();
demo.createDataBase();
demo.createTable();
// 通过insert语句插入
demo.insertWithoutPlaceholder();
// 通过placeholder的方式插入。placeholder方式不会重复编译sql, 在性能上会比直接insert好很多
demo.insertWithPlaceholder();
// 执行select语句
demo.select();
// 在request模式下执行sql
demo.requestSelect();
// 删除表
demo.dropTable();
// 删除数据库
demo.dropDataBase();
} catch (Exception e) {
e.printStackTrace();
}
}
private void init() throws SqlException {
SdkOption option = new SdkOption();
option.setZkCluster("172.27.128.37:7181");
option.setZkPath("/rtidb_wb");
option.setSessionTimeout(10000);
option.setRequestTimeout(60000);
// sqlExecutor执行sql操作是多线程安全的,在实际环境中只创建一个即可
sqlExecutor = new SqlClusterExecutor(option);
}
private void createDataBase() {
java.sql.Statement state = sqlExecutor.getStatement();
try {
state.execute("create database " + db + ";");
} catch (Exception e) {
e.printStackTrace();
}
}
private void dropDataBase() {
java.sql.Statement state = sqlExecutor.getStatement();
try {
state.execute("drop database " + db + ";");
} catch (Exception e) {
e.printStackTrace();
}
}
private void createTable() {
String createTableSql = "create table trans(c1 string,\n" +
" c3 int,\n" +
" c4 bigint,\n" +
" c5 float,\n" +
" c6 double,\n" +
" c7 timestamp,\n" +
" c8 date,\n" +
" index(key=c1, ts=c7));";
try {
state.execute("use " + db + ";");
state.execute(createTableSql);
} catch (Exception e) {
e.printStackTrace();
}
}
private void dropTable() {
java.sql.Statement state = sqlExecutor.getStatement();
try {
state.execute("drop table trans;");
} catch (Exception e) {
e.printStackTrace();
}
}
private void getInputSchema(String selectSql) {
try {
Schema inputSchema = sqlExecutor.getInputSchema(db, selectSql);
Assert.assertEquals(inputSchema.getColumnList().size(), 7);
Column column = inputSchema.getColumnList().get(0);
Assert.assertEquals(column.getColumnName(), "c1");
Assert.assertEquals(column.getSqlType(), Types.VARCHAR);
Assert.assertEquals(column.isConstant(), false);
Assert.assertEquals(column.isNotNull(), false);
} catch (SQLException throwables) {
throwables.printStackTrace();
}
}
private void insertWithoutPlaceholder() {
String insertSql = "insert into trans values(\"aa\",23,33,1.4,2.4,1590738993000,\"2020-05-04\");";
PreparedStatement pstmt = null;
try {
pstmt = sqlExecutor.getInsertPreparedStmt(db, insertSql);
Assert.assertTrue(pstmt.execute());
} catch (SQLException e) {
e.printStackTrace();
Assert.fail();
} finally {
if (pstmt != null) {
try {
// PrepareStatement用完之后必须close
pstmt.close();
} catch (SQLException throwables) {
throwables.printStackTrace();
}
}
}
}
private void insertWithPlaceholder() {
String insertSql = "insert into trans values(\"aa\", ?, 33, ?, 2.4, 1590738993000, \"2020-05-04\");";
PreparedStatement pstmt = null;
try {
pstmt = sqlExecutor.getInsertPreparedStmt(db, insertSql);
ResultSetMetaData metaData = pstmt.getMetaData();
setData(pstmt, metaData);
Assert.assertTrue(pstmt.execute());
} catch (SQLException e) {
e.printStackTrace();
Assert.fail();
} finally {
if (pstmt != null) {
try {
pstmt.close();
} catch (SQLException throwables) {
throwables.printStackTrace();
}
}
}
}
private void select() {
String selectSql = "select * from trans;";
java.sql.ResultSet result = null;
int num = 0;
java.sql.Statement state = sqlExecutor.getStatement();
try {
boolean ret = state.execute(selectSql);
Assert.assertTrue(ret);
result = state.getResultSet();
while (result.next()) {
num++;
}
} catch (SQLException e) {
e.printStackTrace();
} finally {
try {
if (result != null) {
result.close();
}
state.close();
} catch (SQLException throwables) {
throwables.printStackTrace();
}
}
// result数据解析参考下面requestSelect方法
Assert.assertEquals(num, 2);
}
private void requestSelect() {
String selectSql = "SELECT c1, c3, sum(c4) OVER w1 as w1_c4_sum FROM trans WINDOW w1 AS " +
"(PARTITION BY trans.c1 ORDER BY trans.c7 ROWS BETWEEN 2 PRECEDING AND CURRENT ROW);";
PreparedStatement pstmt = null;
ResultSet resultSet = null;
try {
pstmt = sqlExecutor.getRequestPreparedStmt(db, selectSql);
// 如果是执行deployment, 可以通过名字获取preparedstatement
//pstmt = sqlExecutor.getCallablePreparedStmt(db, deploymentName);
ResultSetMetaData metaData = pstmt.getMetaData();
// 执行request模式需要在RequestPreparedStatement设置一行请求数据
setData(pstmt, metaData);
// 调用executeQuery会执行这个select sql, 然后将结果放在了resultSet中
resultSet = pstmt.executeQuery();
Assert.assertTrue(resultSet.next());
Assert.assertEquals(resultSet.getMetaData().getColumnCount(), 3);
Assert.assertEquals(resultSet.getString(1), "bb");
Assert.assertEquals(resultSet.getInt(2), 24);
Assert.assertEquals(resultSet.getLong(3), 34);
Assert.assertFalse(resultSet.next());
} catch (SQLException e) {
e.printStackTrace();
Assert.fail();
} finally {
try {
if (resultSet != null) {
// result用完之后需要close
resultSet.close();
}
if (pstmt != null) {
pstmt.close();
}
} catch (SQLException throwables) {
throwables.printStackTrace();
}
}
}
private void batchRequestSelect() {
String selectSql = "SELECT c1, c3, sum(c4) OVER w1 as w1_c4_sum FROM trans WINDOW w1 AS " +
"(PARTITION BY trans.c1 ORDER BY trans.c7 ROWS BETWEEN 2 PRECEDING AND CURRENT ROW);";
PreparedStatement pstmt = null;
ResultSet resultSet = null;
try {
List<Integer> list = new ArrayList<Integer>();
pstmt = sqlExecutor.getBatchRequestPreparedStmt(db, selectSql, list);
// 如果是执行deployment, 可以通过名字获取preparedstatement
// pstmt = sqlExecutor.getCallablePreparedStmtBatch(db, deploymentName);
ResultSetMetaData metaData = pstmt.getMetaData();
// 执行request模式需要在设置PreparedStatement请求数据
// 设置一个batch发送多少条数据
int batchSize = 5;
for (int idx = 0; idx < batchSize; idx++) {
setData(pstmt, metaData);
// 每次设置完一行数据后需要调用一次addBatch
pstmt.addBatch();
}
// 调用executeQuery会执行这个select sql, 然后将结果放在了resultSet中
resultSet = pstmt.executeQuery();
// 依次取出每一条数据对应的特征结果
while (resultSet.next()) {
Assert.assertEquals(resultSet.getMetaData().getColumnCount(), 3);
Assert.assertEquals(resultSet.getString(1), "bb");
Assert.assertEquals(resultSet.getInt(2), 24);
Assert.assertEquals(resultSet.getLong(3), 34);
}
} catch (SQLException e) {
e.printStackTrace();
Assert.fail();
} finally {
try {
if (resultSet != null) {
// result用完之后需要close
resultSet.close();
}
if (pstmt != null) {
pstmt.close();
}
} catch (SQLException throwables) {
throwables.printStackTrace();
}
}
}
private void setData(PreparedStatement pstmt, ResultSetMetaData metaData) throws SQLException {
for (int i = 0; i < metaData.getColumnCount(); i++) {
int columnType = metaData.getColumnType(i + 1);
if (columnType == Types.BOOLEAN) {
pstmt.setBoolean(i + 1, true);
} else if (columnType == Types.SMALLINT) {
pstmt.setShort(i + 1, (short) 22);
} else if (columnType == Types.INTEGER) {
pstmt.setInt(i + 1, 24);
} else if (columnType == Types.BIGINT) {
pstmt.setLong(i + 1, 34l);
} else if (columnType == Types.FLOAT) {
pstmt.setFloat(i + 1, 1.5f);
} else if (columnType == Types.DOUBLE) {
pstmt.setDouble(i + 1, 2.5);
} else if (columnType == Types.TIMESTAMP) {
pstmt.setTimestamp(i + 1, new Timestamp(1590738994000l));
} else if (columnType == Types.DATE) {
pstmt.setDate(i + 1, Date.valueOf("2020-05-05"));
} else if (columnType == Types.VARCHAR) {
pstmt.setString(i + 1, "bb");
} else {
throw new SQLException("set data failed");
}
}
}
}
4. JDBC连接方式#
除了直接使用SDK外,我们还提供了JDBC的方式,目前只能连接集群版OpenMLDB。连接方式如下:
Class.forName("com._4paradigm.openmldb.jdbc.SQLDriver");
// No database in jdbcUrl
Connection connection = DriverManager.getConnection("jdbc:openmldb:///?zk=localhost:6181&zkPath=/openmldb");
// Set database in jdbcUrl
Connection connection1 = DriverManager.getConnection("jdbc:openmldb:///test_db?zk=localhost:6181&zkPath=/openmldb");
未设置db的Connection功能有限,更推荐创建Connection时就指定db。
默认为在线模式(之后会调整为“默认离线”)。
通过Statement
的方式可以执行所有的sql命令,离线在线均可。切换为离线模式,仍使用SET @@execute_mode='offline';
的方式。例如:
Statement stmt = connection.createStatement();
stmt.execute("SELECT * from t1");
PreparedStatement
可支持SELECT
,INSERT
两种sql,INSERT
仅支持插入到在线。
PreparedStatement selectStatement = connection.prepareStatement("SELECT * FROM t1 WHERE id=?");
PreparedStatement insertStatement = connection.prepareStatement("INSERT INTO t1 VALUES (?,?)");