# OpenMLDB + OneFlow: 高潜用户购买意向预测 本文我们将以[京东高潜用户购买意向预测问题](https://jdata.jd.com/html/detail.html?id=1)为例,示范如何使用[OpenMLDB](https://github.com/4paradigm/OpenMLDB)和 [OneFlow](https://github.com/Oneflow-Inc/oneflow) 联合来打造一个完整的机器学习应用。 如何从历史数据中找出规律,去预测用户未来的购买需求,让最合适的商品遇见最需要的人,是大数据应用在精准营销中的关键问题,也是所有电商平台在做智能化升级时所需要的核心技术。京东作为中国最大的自营式电商,沉淀了数亿的忠实用户,积累了海量的真实数据。本案例以京东商城真实的用户、商品和行为数据(脱敏后)为基础,通过数据挖掘的技术和机器学习的算法,构建用户购买商品的预测模型,输出高潜用户和目标商品的匹配结果,为精准营销提供高质量的目标群体,挖掘数据背后潜在的意义,为电商用户提供更简单、快捷、省心的购物体验。本案例使用OpenMLDB进行数据挖掘,使用OneFlow中的[DeepFM](https://github.com/Oneflow-Inc/models/tree/main/RecommenderSystems/deepfm)模型进行高性能训练推理,提供精准的商品推荐。全量数据[下载链接](https://openmldb.ai/download/jd-recommendation/JD_data.tgz)。 本案例基于 OpenMLDB 集群版进行教程演示。注意,本文档使用的是预编译好的 docker 镜像。如果希望在自己编译和搭建的 OpenMLDB 环境下进行测试,需要配置使用我们[面向特征工程优化的 Spark 发行版](https://openmldb.ai/docs/zh/main/tutorial/openmldbspark_distribution.html)。请参考相关[编译](https://openmldb.ai/docs/zh/main/deploy/compile.html)(参考章节:“针对OpenMLDB优化的Spark发行版”)和[安装部署文档](https://openmldb.ai/docs/zh/main/deploy/install_deploy.html)(参考章节:“部署TaskManager” - “2 修改配置文件conf/taskmanager.properties”)。 ## 1. 环境准备 ### 1.1 下载demo演示用的数据与脚本 下载demo演示用的数据、脚本以及推理所需的OneEmbedding库(详情见[配置oneflow推理服务](#33-配置oneflow推理服务)),在后面的步骤中可以直接使用。 ``` wget http://openmldb.ai/download/jd-recommendation/demo.tgz tar xzf demo.tgz ls demo ``` 也可以checkout Github仓库中的`demo/jd-recommendation`。 我们将这个`demo`目录定为环境变量`demodir`,之后的脚本中多会使用这一环境变量。所以,你需要配置这一变量: ``` export demodir=/demo ``` 我们仅使用小数据集做演示。如果你想要使用全量数据集,请下载[JD_data](http://openmldb.ai/download/jd-recommendation/JD_data.tgz)。 ### 1.2 OneFlow工具包安装 OneFlow工具依赖GPU的强大算力,所以请确保部署机器具备Nvidia GPU,并且保证驱动版本 >=460.X.X [驱动版本需支持CUDA 11.0](https://docs.nvidia.com/cuda/cuda-toolkit-release-notes/index.html#cuda-major-component-versions)。 我们推荐使用conda来管理oneflow环境,安装OneFlow开发版(支持oneembedding),以及本案例演示所需的其他依赖,手动创建方法如下: ```bash conda create -y -n oneflow python=3.9.2 conda activate oneflow pip install -f https://staging.oneflow.info/branch/master/cu112 --pre oneflow pip install psutil petastorm pandas sklearn xxhash "tritonclient[all]" geventhttpclient tornado ``` 拉取Oneflow-serving镜像: ```bash docker pull oneflowinc/oneflow-serving:nightly ``` ```{note} 注意,此处安装的为Oneflow nightly版本。本案例使用的版本commit如下: Oneflow:https://github.com/Oneflow-Inc/oneflow/tree/fcf205cf57989a5ecb7a756633a4be08444d8a28 Oneflow-serving:https://github.com/Oneflow-Inc/serving/tree/ce5d667468b6b3ba66d3be6986f41f965e52cf16 ``` ### 1.3 启动 OpenMLDB Docker 容器 - 注意,请确保 Docker Engine 版本号 >= 18.03 为了快速运行OpenMLDB集群,我们推荐使用镜像启动的方式。由于OpenMLDB集群需要和其他组件网络通信,我们直接使用host网络。并且,我们将在容器中使用已下载的脚本,所以请将数据脚本所在目录`demodir`映射为容器中的目录: ```bash docker run -dit --name=openmldb --network=host -v $demodir:/work/oneflow_demo 4pdosc/openmldb:0.6.9 bash docker exec -it openmldb bash ``` ```{note} 注意,本教程以下的OpenMLDB部分的演示命令默认均在 1.3 启动的 docker 容器`openmldb`内运行。OneFlow命令默认在 1.2 安装的OneFlow虚拟环境`oneflow`下运行。 ``` ### 1.4 创建OpenMLDB集群 ```bash /work/init.sh ``` 我们在镜像内提供了init.sh脚本帮助用户快速创建集群。 ### 1.5 使用 OpenMLDB CLI 操作OpenMLDB集群,我们使用OpenMLDB CLI,使用命令如下: ```bash /work/openmldb/bin/openmldb --zk_cluster=127.0.0.1:2181 --zk_root_path=/openmldb --role=sql_client ``` ```{note} 注意,本教程大部分命令在 OpenMLDB CLI 下执行,为了跟普通 shell 环境做区分,在 OpenMLDB CLI 下执行的命令均使用特殊的提示符 `>` 。 ``` ```{important} 在OpenMLDB集群版中,使用离线引擎的操作,默认都是非阻塞任务,包括在本次演示中将会用到的`LOAD DATA`(离线/在线模式均使用离线引擎),和离线`SELECT INTO`命令。 任务提交以后,可以使用[`SHOW JOBS`](../reference/sql/task_manage/SHOW_JOBS.md), [`SHOW JOB `](../reference/sql/task_manage/SHOW_JOB.md)来查看任务进度。 ``` ## 2. 机器学习训练流程 ### 2.1 流程概览 使用OpenMLDB+OneFlow进行机器学习训练可概括为: 1. OpenMLDB离线特征设计与抽取(SQL) 1. OneFlow模型训练 1. SQL和模型上线 接下来会介绍每一个步骤的具体操作细节。 ### 2.2 使用OpenMLDB进行离线特征抽取 #### 2.2.1 创建数据库和数据表 以下命令均在 OpenMLDB CLI 中执行。 ```sql > CREATE DATABASE JD_db; > USE JD_db; > CREATE TABLE action(reqId string, eventTime timestamp, ingestionTime timestamp, actionValue int); > CREATE TABLE flattenRequest(reqId string, eventTime timestamp, main_id string, pair_id string, user_id string, sku_id string, time bigint, split_id int, time1 string); > CREATE TABLE bo_user(ingestionTime timestamp, user_id string, age string, sex string, user_lv_cd string, user_reg_tm bigint); > CREATE TABLE bo_action(ingestionTime timestamp, pair_id string, time bigint, model_id string, type string, cate string, br string); > CREATE TABLE bo_product(ingestionTime timestamp, sku_id string, a1 string, a2 string, a3 string, cate string, br string); > CREATE TABLE bo_comment(ingestionTime timestamp, dt bigint, sku_id string, comment_num int, has_bad_comment string, bad_comment_rate float); ``` 也可使用sql脚本(`/work/oneflow_demo/sql_scripts/create_tables.sql`)直接运行: ``` /work/openmldb/bin/openmldb --zk_cluster=127.0.0.1:2181 --zk_root_path=/openmldb --role=sql_client < /work/oneflow_demo/sql_scripts/create_tables.sql ``` #### 2.2.2 离线数据导入 我们需要将源数据导入到OpenMLDB中作为离线数据,用于离线特征计算。 如果你导入较大的数据集,可以使用软链接的方式,减少导入消耗时间。本次演示中仅导入很少的数据,因此硬拷贝也不会消耗太多时间。 ```sql > USE JD_db; > SET @@execute_mode='offline'; > LOAD DATA INFILE '/work/oneflow_demo/data/action/*.parquet' INTO TABLE action options(format='parquet', header=true, mode='overwrite'); > LOAD DATA INFILE '/work/oneflow_demo/data/flattenRequest_clean/*.parquet' INTO TABLE flattenRequest options(format='parquet', header=true, mode='overwrite'); > LOAD DATA INFILE '/work/oneflow_demo/data/JD_data/bo_user/*.parquet' INTO TABLE bo_user options(format='parquet', header=true, mode='overwrite'); > LOAD DATA INFILE '/work/oneflow_demo/data/JD_data/bo_action/*.parquet' INTO TABLE bo_action options(format='parquet', header=true, mode='overwrite'); > LOAD DATA INFILE '/work/oneflow_demo/data/JD_data/bo_product/*.parquet' INTO TABLE bo_product options(format='parquet', header=true, mode='overwrite'); > LOAD DATA INFILE '/work/oneflow_demo/data/JD_data/bo_comment/*.parquet' INTO TABLE bo_comment options(format='parquet', header=true, mode='overwrite'); ``` 或使用脚本执行,并快速查询jobs状态: ``` /work/openmldb/bin/openmldb --zk_cluster=127.0.0.1:2181 --zk_root_path=/openmldb --role=sql_client < /work/oneflow_demo/sql_scripts/load_offline_data.sql echo "show jobs;" | /work/openmldb/bin/openmldb --zk_cluster=127.0.0.1:2181 --zk_root_path=/openmldb --role=sql_client ``` ```{important} 请等待`SHOW JOBS`中所有任务运行成功( `state` 转至 `FINISHED` 状态),再进行下一步操作 。 ``` #### 2.2.3 特征设计 通常在设计特征前,用户需要根据机器学习的目标对数据进行分析,然后根据分析设计和调研特征。机器学习的数据分析和特征研究不是本文讨论的范畴,我们将不作展开。本文假定用户具备机器学习的基本理论知识,有解决机器学习问题的能力,能够理解SQL语法,并能够使用SQL语法构建特征。针对本案例,用户经过分析和调研设计了若干特征。 请注意,在实际的机器学习特征调研过程中,科学家对特征进行反复试验,寻求模型效果最好的特征集。所以会不断的重复多次特征设计->离线特征抽取->模型训练过程,并不断调整特征以达到预期效果。 #### 2.2.4 离线特征抽取 源数据准备好以后,就可以进行离线特征抽取,我们将特征结果输出到`'/work/oneflow_demo/out/1'`目录下保存(对应映射为`$demodir/out/1`,方便容器外部使用特征数据),以供后续的模型训练。 `SELECT` 命令对应了基于上述特征设计所产生的 SQL 特征计算脚本。 ```sql > USE JD_db; > select * from ( select `reqId` as reqId_1, `eventTime` as flattenRequest_eventTime_original_0, `reqId` as flattenRequest_reqId_original_1, `pair_id` as flattenRequest_pair_id_original_24, `sku_id` as flattenRequest_sku_id_original_25, `user_id` as flattenRequest_user_id_original_26, distinct_count(`pair_id`) over flattenRequest_user_id_eventTime_0_10_ as flattenRequest_pair_id_window_unique_count_27, fz_top1_ratio(`pair_id`) over flattenRequest_user_id_eventTime_0_10_ as flattenRequest_pair_id_window_top1_ratio_28, fz_top1_ratio(`pair_id`) over flattenRequest_user_id_eventTime_0s_14d_200 as flattenRequest_pair_id_window_top1_ratio_29, distinct_count(`pair_id`) over flattenRequest_user_id_eventTime_0s_14d_200 as flattenRequest_pair_id_window_unique_count_32, case when !isnull(at(`pair_id`, 0)) over flattenRequest_user_id_eventTime_0_10_ then count_where(`pair_id`, `pair_id` = at(`pair_id`, 0)) over flattenRequest_user_id_eventTime_0_10_ else null end as flattenRequest_pair_id_window_count_35, dayofweek(timestamp(`eventTime`)) as flattenRequest_eventTime_dayofweek_41, case when 1 < dayofweek(timestamp(`eventTime`)) and dayofweek(timestamp(`eventTime`)) < 7 then 1 else 0 end as flattenRequest_eventTime_isweekday_43 from `flattenRequest` window flattenRequest_user_id_eventTime_0_10_ as (partition by `user_id` order by `eventTime` rows between 10 preceding and 0 preceding), flattenRequest_user_id_eventTime_0s_14d_200 as (partition by `user_id` order by `eventTime` rows_range between 14d preceding and 0s preceding MAXSIZE 200)) as out0 last join ( select `flattenRequest`.`reqId` as reqId_3, `action_reqId`.`actionValue` as action_actionValue_multi_direct_2, `bo_product_sku_id`.`a1` as bo_product_a1_multi_direct_3, `bo_product_sku_id`.`a2` as bo_product_a2_multi_direct_4, `bo_product_sku_id`.`a3` as bo_product_a3_multi_direct_5, `bo_product_sku_id`.`br` as bo_product_br_multi_direct_6, `bo_product_sku_id`.`cate` as bo_product_cate_multi_direct_7, `bo_product_sku_id`.`ingestionTime` as bo_product_ingestionTime_multi_direct_8, `bo_user_user_id`.`age` as bo_user_age_multi_direct_9, `bo_user_user_id`.`ingestionTime` as bo_user_ingestionTime_multi_direct_10, `bo_user_user_id`.`sex` as bo_user_sex_multi_direct_11, `bo_user_user_id`.`user_lv_cd` as bo_user_user_lv_cd_multi_direct_12 from `flattenRequest` last join `action` as `action_reqId` on `flattenRequest`.`reqId` = `action_reqId`.`reqId` last join `bo_product` as `bo_product_sku_id` on `flattenRequest`.`sku_id` = `bo_product_sku_id`.`sku_id` last join `bo_user` as `bo_user_user_id` on `flattenRequest`.`user_id` = `bo_user_user_id`.`user_id`) as out1 on out0.reqId_1 = out1.reqId_3 last join ( select `reqId` as reqId_14, max(`bad_comment_rate`) over bo_comment_sku_id_ingestionTime_0s_64d_100 as bo_comment_bad_comment_rate_multi_max_13, min(`bad_comment_rate`) over bo_comment_sku_id_ingestionTime_0_10_ as bo_comment_bad_comment_rate_multi_min_14, min(`bad_comment_rate`) over bo_comment_sku_id_ingestionTime_0s_64d_100 as bo_comment_bad_comment_rate_multi_min_15, distinct_count(`comment_num`) over bo_comment_sku_id_ingestionTime_0s_64d_100 as bo_comment_comment_num_multi_unique_count_22, distinct_count(`has_bad_comment`) over bo_comment_sku_id_ingestionTime_0s_64d_100 as bo_comment_has_bad_comment_multi_unique_count_23, fz_topn_frequency(`has_bad_comment`, 3) over bo_comment_sku_id_ingestionTime_0s_64d_100 as bo_comment_has_bad_comment_multi_top3frequency_30, fz_topn_frequency(`comment_num`, 3) over bo_comment_sku_id_ingestionTime_0s_64d_100 as bo_comment_comment_num_multi_top3frequency_33 from (select `eventTime` as `ingestionTime`, bigint(0) as `dt`, `sku_id` as `sku_id`, int(0) as `comment_num`, '' as `has_bad_comment`, float(0) as `bad_comment_rate`, reqId from `flattenRequest`) window bo_comment_sku_id_ingestionTime_0s_64d_100 as ( UNION (select `ingestionTime`, `dt`, `sku_id`, `comment_num`, `has_bad_comment`, `bad_comment_rate`, '' as reqId from `bo_comment`) partition by `sku_id` order by `ingestionTime` rows_range between 64d preceding and 0s preceding MAXSIZE 100 INSTANCE_NOT_IN_WINDOW), bo_comment_sku_id_ingestionTime_0_10_ as ( UNION (select `ingestionTime`, `dt`, `sku_id`, `comment_num`, `has_bad_comment`, `bad_comment_rate`, '' as reqId from `bo_comment`) partition by `sku_id` order by `ingestionTime` rows between 10 preceding and 0 preceding INSTANCE_NOT_IN_WINDOW)) as out2 on out0.reqId_1 = out2.reqId_14 last join ( select `reqId` as reqId_17, fz_topn_frequency(`br`, 3) over bo_action_pair_id_ingestionTime_0s_10h_100 as bo_action_br_multi_top3frequency_16, fz_topn_frequency(`cate`, 3) over bo_action_pair_id_ingestionTime_0s_10h_100 as bo_action_cate_multi_top3frequency_17, fz_topn_frequency(`model_id`, 3) over bo_action_pair_id_ingestionTime_0s_7d_100 as bo_action_model_id_multi_top3frequency_18, distinct_count(`model_id`) over bo_action_pair_id_ingestionTime_0s_14d_100 as bo_action_model_id_multi_unique_count_19, distinct_count(`model_id`) over bo_action_pair_id_ingestionTime_0s_7d_100 as bo_action_model_id_multi_unique_count_20, distinct_count(`type`) over bo_action_pair_id_ingestionTime_0s_14d_100 as bo_action_type_multi_unique_count_21, fz_topn_frequency(`type`, 3) over bo_action_pair_id_ingestionTime_0s_7d_100 as bo_action_type_multi_top3frequency_40, fz_topn_frequency(`type`, 3) over bo_action_pair_id_ingestionTime_0s_14d_100 as bo_action_type_multi_top3frequency_42 from (select `eventTime` as `ingestionTime`, `pair_id` as `pair_id`, bigint(0) as `time`, '' as `model_id`, '' as `type`, '' as `cate`, '' as `br`, reqId from `flattenRequest`) window bo_action_pair_id_ingestionTime_0s_10h_100 as ( UNION (select `ingestionTime`, `pair_id`, `time`, `model_id`, `type`, `cate`, `br`, '' as reqId from `bo_action`) partition by `pair_id` order by `ingestionTime` rows_range between 10h preceding and 0s preceding MAXSIZE 100 INSTANCE_NOT_IN_WINDOW), bo_action_pair_id_ingestionTime_0s_7d_100 as ( UNION (select `ingestionTime`, `pair_id`, `time`, `model_id`, `type`, `cate`, `br`, '' as reqId from `bo_action`) partition by `pair_id` order by `ingestionTime` rows_range between 7d preceding and 0s preceding MAXSIZE 100 INSTANCE_NOT_IN_WINDOW), bo_action_pair_id_ingestionTime_0s_14d_100 as ( UNION (select `ingestionTime`, `pair_id`, `time`, `model_id`, `type`, `cate`, `br`, '' as reqId from `bo_action`) partition by `pair_id` order by `ingestionTime` rows_range between 14d preceding and 0s preceding MAXSIZE 100 INSTANCE_NOT_IN_WINDOW)) as out3 on out0.reqId_1 = out3.reqId_17 INTO OUTFILE '/work/oneflow_demo/out/1' OPTIONS(mode='overwrite'); ``` ```{note} 注意,集群版 `SELECT INTO` 为非阻塞任务,可以使用命令 `SHOW JOBS` 查看任务运行状态,请等待任务运行成功( `state` 转至 `FINISHED` 状态),再进行下一步操作 。耗时大概1分半。 ``` 因为这里只有一个特征抽取任务,可以使用阻塞的运行方式,命令完成即特征抽取完成。直接运行sql脚本`sync_select_out.sql`: ``` /work/openmldb/bin/openmldb --zk_cluster=127.0.0.1:2181 --zk_root_path=/openmldb --role=sql_client < /work/oneflow_demo/sql_scripts/sync_select_out.sql ``` ### 2.3 预处理特征数据以配合DeepFM模型要求 ```{note} 注意,以下命令在docker外执行,使用安装了1.2所描述的OneFlow运行环境 ``` 根据 [DeepFM 论文](https://arxiv.org/abs/1703.04247), 类别特征和连续特征都被当作稀疏特征对待。 > χ may include categorical fields (e.g., gender, location) and continuous fields (e.g., age). Each categorical field is represented as a vector of one-hot encoding, and each continuous field is represented as the value itself, or a vector of one-hot encoding after discretization. 进入demodir文件夹,并使用预处理脚本做特征数据预处理。运行需要pandas,xxhash等依赖,推荐在`oneflow`虚拟环境中运行。 ```bash cd $demodir/feature_preprocess/ python preprocess.py $demodir/out/1 ``` `$demodir/out/1`即上一步OpenMLDB计算得到的特征数据目录。脚本将在 `$demodir/feature_preprocess/out`对应生成train,test,valid三个parquet数据集,并将三者的行数和`table_size_array`保存在文件`data_info.txt`中(下一步可以直接使用info文件,不需要手动填写参数)。运行结果打印类似: ``` feature total count: 13916 train count: 11132 saved to /feature_preprocess/out/train test count: 1391 saved to /feature_preprocess/out/test val count: 1393 saved to /feature_preprocess/out/valid table size array: 4,26,16,4,11,809,1,1,5,3,17,16,7,13916,13890,13916,10000,3674,9119,7,2,13916,5,4,4,33,2,2,7,2580,3,5,13916,10,47,13916,365,17,132,32,37 saved to /feature_preprocess/out/data_info.txt ``` 得到的文件结构类似: ``` out/ ├── data_info.txt ├── test │   └── test.parquet ├── train │   └── train.parquet └── valid └── valid.parquet 3 directories, 4 files ``` ### 2.4 启动OneFlow进行模型训练 ```{note} 注意,以下命令在安装1.2所描述的OneFlow运行环境中运行 ``` ```bash cd $demodir/oneflow_process/ sh train_deepfm.sh -h Usage: train_deepfm.sh DATA_DIR(abs) We'll read required args in $DATA_DIR/data_info.txt, and save results in path ./ ``` OneFLow模型训练使用该目录中的`train_deepfm.sh`脚本,使用说明如上所示。通常情况下,我们不用特别配置。脚本会自动读取`$DATA_DIR/data_info.txt`的参数,包括`num_train_samples`,`num_val_samples`,`num_test_samples`和`table_size_array`。请使用预处理后的特征数据集(绝对路径),命令如下: ```bash bash train_deepfm.sh $demodir/feature_preprocess/out ``` 生成模型将存放在`$demodir/oneflow_process/model_out`,用来serving的模型存放在`$demodir/oneflow_process/model/embedding/1/model`。 ## 3. 模型上线流程 ### 3.1 流程概览 使用OpenMLDB+OneFlow进行模型serving,主要步骤为: 1. OpenMLDB上线: SQL上线,准备在线数据 1. Oneflow上线:加载模型 1. 启动预测服务,我们使用一个简单的predict server做展示 接下来会介绍每一个步骤的具体操作细节。 ### 3.2 OpenMLDB上线 #### 3.2.1 特征抽取SQL脚本上线 假定离线训练效果理想,我们就可以将该特征抽取SQL脚本上线,提供实时在线的特征抽取服务。在OpenMLDB容器内(如已退出,`docker exec -it openmldb bash`重新进入) 1. 登录 OpenMLDB CLI。 ```bash /work/openmldb/bin/openmldb --zk_cluster=127.0.0.1:2181 --zk_root_path=/openmldb --role=sql_client ``` 2. 执行上线部署,在 OpenMLDB CLI 中deploy 离线特征抽取使用的SQL(SQL较长,见[离线特征抽取](#224-离线特征抽取),此处不展示SQL)。 ```sql > USE JD_db; > DEPLOY demo ; ``` 也可以在docker容器内直接运行: ``` /work/openmldb/bin/openmldb --zk_cluster=127.0.0.1:2181 --zk_root_path=/openmldb --role=sql_client < /work/oneflow_demo/sql_scripts/deploy.sql ``` 可使用如下命令可确认deploy信息: ```sql show deployment demo; ``` deploy后,可通过访问OpenMLDB ApiServer `127.0.0.1:9080`进行实时特征计算。 #### 3.2.2 在线数据准备 在**在线**执行模式下,导入在线数据,用于在线特征计算。为了简单起见,我们直接导入和离线一致的数据集。生产中,通常是离线是大量的冷数据,在线是近期的热数据。 以下命令均在 OpenMLDB CLI 下执行。 ```sql > USE JD_db; > SET @@execute_mode='online'; > LOAD DATA INFILE '/work/oneflow_demo/data/JD_data/action/*.parquet' INTO TABLE action options(format='parquet', mode='append'); > LOAD DATA INFILE '/work/oneflow_demo/data/JD_data/flattenRequest_clean/*.parquet' INTO TABLE flattenRequest options(format='parquet', mode='append'); > LOAD DATA INFILE '/work/oneflow_demo/data/JD_data/bo_user/*.parquet' INTO TABLE bo_user options(format='parquet', mode='append'); > LOAD DATA INFILE '/work/oneflow_demo/data/JD_data/bo_action/*.parquet' INTO TABLE bo_action options(format='parquet', mode='append'); > LOAD DATA INFILE '/work/oneflow_demo/data/JD_data/bo_product/*.parquet' INTO TABLE bo_product options(format='parquet', mode='append'); > LOAD DATA INFILE '/work/oneflow_demo/data/JD_data/bo_comment/*.parquet' INTO TABLE bo_comment options(format='parquet', mode='append'); ``` 也可以使用: ``` /work/openmldb/bin/openmldb --zk_cluster=127.0.0.1:2181 --zk_root_path=/openmldb --role=sql_client < /work/oneflow_demo/sql_scripts/load_online_data.sql ``` 使用以下命令快速查看jobs的状态: ``` echo "show jobs;" | /work/openmldb/bin/openmldb --zk_cluster=127.0.0.1:2181 --zk_root_path=/openmldb --role=sql_client ``` ```{note} 注意,在线 `LOAD DATA` 也是非阻塞任务,请等待任务运行成功( `state` 转至 `FINISHED` 状态),再进行下一步操作 。 ``` ### 3.3 配置OneFlow推理服务 OneFlow的推理服务需要[OneEmbedding](https://docs.oneflow.org/master/cookies/one_embedding.html)的支持。该支持目前还没有合入主框架中。 我们提供预编译版本的库在`$demodir/oneflow_serving/`中。若与你的环境不兼容,你需要重新编译,可参考附录A进行编译测试。接下来步骤默认相关支持已编译完成,并且存放在`$demodir/oneflow_serving/`路径中。 #### 3.3.1 检查 1. 模型路径(`$demodir/oneflow_process/model`)结果是否如下所示。 ``` cd $demodir/oneflow_process/ tree -L 4 model/ ``` ``` model/ `-- embedding |-- 1 | `-- model | |-- model.mlir | |-- module.dnn_layer.linear_layers.0.bias | |-- module.dnn_layer.linear_layers.0.weight | |-- module.dnn_layer.linear_layers.12.bias | |-- module.dnn_layer.linear_layers.12.weight | |-- module.dnn_layer.linear_layers.15.bias | |-- module.dnn_layer.linear_layers.15.weight | |-- module.dnn_layer.linear_layers.3.bias | |-- module.dnn_layer.linear_layers.3.weight | |-- module.dnn_layer.linear_layers.6.bias | |-- module.dnn_layer.linear_layers.6.weight | |-- module.dnn_layer.linear_layers.9.bias | |-- module.dnn_layer.linear_layers.9.weight | |-- module.embedding_layer.one_embedding.shadow | `-- one_embedding_options.json `-- config.pbtxt ``` 1. 其中,`config.pbtxt`中的`name`要和config.pbtxt所在目录的名字(本案例中为`embedding`)保持一致;`model/embedding/1/model/one_embedding_options.json`的路径`persistent_table.path`会自动生成,可以再确认下路径是否正确,应为`$demodir/oneflow_process/persistent`绝对路径。 #### 3.3.2 启动OneFLow推理服务 使用以下命令启动OneFlow推理服务: ``` docker run --runtime=nvidia --rm -p 8001:8001 -p8000:8000 -p 8002:8002 \ -v $demodir/oneflow_process/model:/models \ -v $demodir/oneflow_process/persistent:/root/demo/persistent \ oneflowinc/oneflow-serving:nightly \ bash -c '/opt/tritonserver/bin/tritonserver --model-repository=/models' ``` 若成功,将显示如下类似输出: ``` ... I0929 07:28:34.281655 1 grpc_server.cc:4117] Started GRPCInferenceService at 0.0.0.0:8001 I0929 07:28:34.282343 1 http_server.cc:2815] Started HTTPService at 0.0.0.0:8000 I0929 07:28:34.324662 1 http_server.cc:167] Started Metrics Service at 0.0.0.0:8002 ``` 启动后,可访问`http://127.0.0.1:8000`进行推理。 可通过以下方式测试服务是否启动,如果出现`Connection refused`,说明服务启动失败: ``` curl -v localhost:8000/v2/health/ready ``` ```{note} 如果800x端口出现冲突,可以更改端口映射中的主机端口,例如`-p 18000:8000`。如果更改了8000的映射,后续访问8000的都需要相应更改。 ``` ### 3.4 启动推理服务 ```{note} 以下命令可在物理机环境执行,由于Python依赖,推荐OneFlow虚拟环境中执行。 ``` 脚本中参数使用`127.0.0.1:9080`作为OpenMLDB ApiServer地址,`127.0.0.1:8000`作为OneFlow Triton地址。 ```bash sh $demodir/serving/start_predict_server.sh ``` 你可以通过查看日志文件`/tmp/p.log`,获得predict server的运行日志。 ### 3.5 发送预估请求 执行 `predict.py` 脚本。该脚本发送一行请求数据到预估服务,接收返回的预估结果,并打印出来。 ```bash python $demodir/serving/predict.py ``` 输出范例: ``` ----------------ins--------------- ['200080_5505_2016-03-15 20:43:04' 1458045784000 '200080_5505_2016-03-15 20:43:04' '200080_5505' '5505' '200080' 1 1.0 1.0 1 1 3 1 '200080_5505_2016-03-15 20:43:04' None '3' '1' '1' '214' '8' 1603438960564 None None None None '200080_5505_2016-03-15 20:43:04' 0.02879999950528145 0.0 0.0 2 2 '1,,NULL' '4,0,NULL' '200080_5505_2016-03-15 20:43:04' ',NULL,NULL' ',NULL,NULL' ',NULL,NULL' 1 1 1 ',NULL,NULL' ',NULL,NULL'] ---------------predict change of purchase ------------- [[b'0.007005:0']] ```