# Monitoring ## Overview The monitoring scheme of OpenMLDB is outlined as follows: - Use [Prometheus](https://prometheus.io) to collect monitoring metrics, [Grafana](https://grafana.com/oss/grafana/) to visualize metrics - OpenMLDB exporter exposes database-level metrics - Each component as a server itself expose component-level metrics - Uses [node_exporter](https://github.com/prometheus/node_exporter) to expose machine and operating system related metrics ## Quick Deployment 1. [Optional] Deploy node_exporter on each machine of OpenMLDB. If not deployed, it will not affect the display of Grafana OpenMLDB Dashboard. 2. [Optional] Deploy an OpenMLDB exporter. If not deployed, it will only result in a few missing data in the Grafana OpenMLDB Dashboard, without affecting the monitoring of read and write operations. 3. Start Prometheus with the following minimal configuration file. Fill in the corresponding IP addresses, but do not fill in the IP address of TaskManager (which does not support metrics): ```yaml global: scrape_interval: 15s # By default, scrape targets every 15 seconds. # A scrape configuration containing exactly one endpoint to scrape: # Here it's Prometheus itself. scrape_configs: # The job name is added as a label `job=` to any timeseries scraped from this config. - job_name: openmldb_components metrics_path: /brpc_metrics static_configs: - targets: - nameserver_ip - tablet_ip - tablet_ip - apiserver_ip ``` For complete configuration, refer to [openmldb_mixin/prometheus_example.yml](https://github.com/4paradigm/openmldb-exporter/blob/main/openmldb_mixin/prometheus_example.yml). Command reference: `docker run -d -v :/etc/prometheus/prometheus.yml -p 9090:9090 -name promethues prom/prometheus` 4. Start Grafana and use the OpenMLDB Dashboard template Command reference: `docker run -d -p 3000:3000 --name=grafana grafana/grafana-oss` Create a Dashboard using the template, Template ID: 17843, URL: https://grafana.com/grafana/dashboards/17843. If it is an empty Dashboard, you can modify the `JSON Model` in the settings and paste the template content. 5. To track Deployment execution, you also need to configure the OpenMLDB global variable `SET GLOBAL deploy_stats = 'on';`. ## Install and Run OpenMLDB Exporter ### Introduction [![PyPI](https://img.shields.io/pypi/v/openmldb-exporter?label=openmldb-exporter)](https://pypi.org/project/openmldb-exporter/) ![PyPI - Python Version](https://img.shields.io/pypi/pyversions/openmldb-exporter?style=flat-square) The OpenMLDB exporter is a Prometheus exporter implemented in Python. The core connects the OpenMLDB instance through the database SDK and will query the exposed monitoring indicators through SQL statements. Exporter publish into PyPI. You can install the latest `openmldb-exporter` through pip. For development instructions, please refer to the code directory [README](https://github.com/4paradigm/openmldb-exporter). ### Environmental Requirements - Python >= 3.8 - OpenMLDB >= 0.5.0 ### Compatibility | [OpenMLDB Exporter version](https://pypi.org/project/openmldb-exporter/) | [OpenMLDB supported version](https://github.com/4paradigm/OpenMLDB/releases) | [Grafana Dashboard revision](https://grafana.com/grafana/dashboards/17843-openmldb-dashboard/?tab=revisions) | Explaination | | ---- | ---- | ---- | ------- | | >= 0.9.0 | >= 0.8.4 | >=4 | OpenMLDB removed deploy response time in database since 0.8.4 | | < 0.9.0 | >= 0.5.0, < 0.8.4 | 3 | | ### Preparation 1. Get OpenMLDB You can download precompiled packages from the [OpenMLDB release](https://github.com/4paradigm/OpenMLDB/releases) page. 2. Start OpenMLDB See [install_deploy](../deploy/install_deploy.md) How to start OpenMLDB components OpenMLDB exporter requires OpenMLDB starts with the server status feature, make sure there is the startup parameter `--enable_status_service=true`, or `--enable_status_service=true` appears in startup flag files (usually `conf/(tablet|nameserver).flags`). The startup script `bin/start.sh` should enable server status by default. 3. Note: Make sure to select the binding IP addresses of OpenMLDB components OpenMLDB exporter as well as Prometheus and Grafana to ensure that Grafana can access Prometheus, and that Prometheus, OpenMLDB exporter, and OpenMLDB components can access each other. ### Deploy the OpenMLDB exporter **You can run openmdlb-exporter from docker, or install and run directly from PyPI.**
Use docker ```sh docker run ghcr.io/4paradigm/openmldb-exporter \ --config.zk_root= \ --config.zk_path= ```
Install and Run from PyPI ```sh pip install openmldb-exporter # start openmldb-exporter \ --config.zk_root= \ --config.zk_path= ```

And replace `` and `` to correct value. Afterwards, you can check metrics with curl: ```sh curl http://:8000/metrics ``` `` is docker container IP, or `127.0.0.1` if installing from PyPI.
Example output ```sh # HELP openmldb_connected_seconds_total duration for a component conncted time in seconds # TYPE openmldb_connected_seconds_total counter openmldb_connected_seconds_total{endpoint="172.17.0.15:9520",role="tablet"} 208834.70900011063 openmldb_connected_seconds_total{endpoint="172.17.0.15:9521",role="tablet"} 208834.70700001717 openmldb_connected_seconds_total{endpoint="172.17.0.15:9522",role="tablet"} 208834.71399998665 openmldb_connected_seconds_total{endpoint="172.17.0.15:9622",role="nameserver"} 208833.70000004768 openmldb_connected_seconds_total{endpoint="172.17.0.15:9623",role="nameserver"} 208831.70900011063 openmldb_connected_seconds_total{endpoint="172.17.0.15:9624",role="nameserver"} 208829.7230000496 # HELP openmldb_connected_seconds_created duration for a component conncted time in seconds # TYPE openmldb_connected_seconds_created gauge openmldb_connected_seconds_created{endpoint="172.17.0.15:9520",role="tablet"} 1.6501813860467942e+09 openmldb_connected_seconds_created{endpoint="172.17.0.15:9521",role="tablet"} 1.6501813860495396e+09 openmldb_connected_seconds_created{endpoint="172.17.0.15:9522",role="tablet"} 1.650181386050323e+09 openmldb_connected_seconds_created{endpoint="172.17.0.15:9622",role="nameserver"} 1.6501813860512116e+09 openmldb_connected_seconds_created{endpoint="172.17.0.15:9623",role="nameserver"} 1.650181386051238e+09 openmldb_connected_seconds_created{endpoint="172.17.0.15:9624",role="nameserver"} 1.6501813860512598e+09 ```
### Configuration You can view the help from: ```sh openmldb-exporter -h ``` `--config.zk_root` and `--config.zk_path` are mandatory.
Available options ``` usage: openmldb-exporter [-h] [--log.level LOG.LEVEL] [--web.listen-address WEB.LISTEN_ADDRESS] [--web.telemetry-path WEB.TELEMETRY_PATH] [--config.zk_root CONFIG.ZK_ROOT] [--config.zk_path CONFIG.ZK_PATH] [--config.interval CONFIG.INTERVAL] OpenMLDB exporter optional arguments: -h, --help show this help message and exit --log.level LOG.LEVEL config log level, default WARN --web.listen-address WEB.LISTEN_ADDRESS process listen port, default 8000 --web.telemetry-path WEB.TELEMETRY_PATH Path under which to expose metrics, default metrics --config.zk_root CONFIG.ZK_ROOT endpoint to zookeeper, default 127.0.0.1:6181 --config.zk_path CONFIG.ZK_PATH root path in zookeeper for OpenMLDB, default / --config.interval CONFIG.INTERVAL interval in seconds to pull metrics periodically, default 30.0 ```
## Deploy Node Exporter [node_exporter](https://github.com/prometheus/node_exporter) is an official implementation of Prometheus that exposes system metrics, read their README about setup. To display these metrics in Grafana, use the official Dashboard 1860 provided by Prometheus. ## Deploy Prometheus and Grafana For installation and deployment of Prometheus and Grafana, please refer to the official documents [promtheus get started](https://prometheus.io/docs/prometheus/latest/getting_started/) and [Grafana get started](https://grafana.com/docs/ grafana/latest/getting-started/getting-started-prometheus/). We recommend quick start with docker images, and use Grafana >= 8.3 and Prometheus >= 1.0.0 . OpenMLDB provides Prometheus and Grafana configuration files for reference, see [OpenMLDB mixin](https://github.com/4paradigm/openmldb-exporter/tree/main/openmldb_mixin): - prometheus_example.yml: Prometheus configuration example, remember to modify the target address in `node`, `openmldb_components` and `openmldb_exporter` jobs for your environment - openmldb_dashboard.json: Grafana dashboard configuration for OpenMLDB metrics, import it two steps: 1. Under the Grafana data source page, add the started Prometheus server address as the data source 2. Under the dashboard browsing page, click the `Import` button, paste the dashboard ID `17843`, or upload this json file directly - Rad more in [Grafana import dashboard](https://grafana.com/docs/grafana/latest/dashboards/manage-dashboards/#import-a-dashboard) - Page in Grafana dashboard: https://grafana.com/grafana/dashboards/17843 ## Understand Existing Monitoring Metrics Taking the OpenMLDB cluster system as an example, there are two type of metrics categorized by Prometheus pull jobs: ### 1. DB-Level metrics Exposed through the OpenMLDB exporter, the `job_name=openmldb_exporter` entry in the `prometheus_example.yml`: ```yaml - job_name: openmldb_exporter # pull OpenMLDB DB-Level specific metric # change the 'targets' value to your deployed OpenMLDB exporter endpoint static_configs: - targets: - 172.17.0.15:8000 ``` In detail three type of metrics: - Component status: table/nameserver/... information and status - Table status: database table related information, such as `rows_count`, `memory_bytes` - Deploy query response time **All metrics should visible already after a successful setup, excepting deploy query response time. Deploy query response time requires a extra global variable `deploy_stats` on, from OpenMLDB CLI:** ```sql SET GLOBAL deploy_stats = 'on'; ``` The full DB-Level metrics can be listed through the following command: ```bash curl http://172.17.0.15:8000/metrics ``` ### 2. Component-Level metrics The related components of OpenMLDB (nameserver, tablet, etc), themselves as BRPC server, and expose [prometheus related metrics](https://github.com/apache/incubator-brpc/blob/master/docs/en/bvar .md#export-to-prometheus), you only need to configure the Prometheus server to pull metrics from the corresponding address. It corresponds to the `job_name=openmldb_components` item in `prometheus_example.yml`: ```yaml - job_name: openmldb_components # job to pull component metrics from OpenMLDB like tablet/nameserver # tweak the 'targets' list in 'static_configs' on your need # every nameserver/tablet component endpoint should be added into targets metrics_path: /brpc_metrics static_configs: - targets: - 172.17.0.15:9622 ``` The metrics of exposure are mainly - BRPC server process related information - Corresponding to the RPC method related metrics defined by the BRPC server, such as the RPC request `count`, `error_count`, `qps` and `response_time` Metrics and help information can be shown through the following command (Note that the metrics exposed by different components will vary): ```bash curl http://${COMPONENT_IP}:${COMPONENT_PORT}/brpc_metrics ```